Меню

Скорость течения реки буква

Почему в физике расстояние обозначается буквой s, а скорость – v? — «Как и Почему»

Содержание

Со времен возникновения различных наук и математических расчетов ученые начали использовать множество символов и сокращений. Это вполне оправданное решение, ведь длинные формулы, записанные при помощи слов, отнимали бы много времени. По какому принципу выбираются эти обозначения, в частности буквы, указывающие на скорость и расстояние?

Как обозначают физические величины и понятия?

В физике существует общепринятый список обозначений. Он включает латинские и греческие буквы, кириллицу (редко), специальные символы, надстрочные и подстрочные знаки, скобки и др. В качестве самостоятельной науки физика зародилась в 17-м веке во время научной революции, но многие идеи, физические воззрения появились еще в античный период. Отсюда и использование латыни, греческого языка.

Количество физических величин довольно большое – букв в алфавитах недостаточно для обозначения их всех. Поэтому одни и те же буквы могут обозначать разные понятия. Важно различать и стиль написания.

Например, латинские символы обычно пишутся курсивом, греческие – обыкновенным прямым начертанием. Строчными буквами обозначают интенсивные величины (не зависят от размеров системы, например, температура), заглавными – экстенсивные.

Интересный факт: среди всех латинских букв для обозначения понятий из области физики реже всего встречается буква о.

Ввиду исторических причин множество обозначений с использованием латинских букв – это сокращения слов, которые указывают на данные понятия. Чаще всего это латинские, английские, немецкие и французские слова. Во избежание путаницы почти не используются греческие заглавные буквы, если они похожи на латинские по манере написания.

Почему в физике расстояние обозначается буквой s?

Расстояние в физике измеряется единицами длины (метр в международной системе единиц) и имеет два значения:

  • степень удаленности объектов друг от друга;
  • длина пути, которую прошел объект.

Расстояние – один из тех случаев, когда обозначающая буква является первой в слове-определении. Некоторые источники по-разному объясняют происхождение буквы s:

  1. От английского слова «space», которое означает расстояние, пространство, площадь.
  2. От латинского «spatium» – пространство между двумя предметами, протяжение в длину и ширину.

Фактически оба варианта являются правильными. Согласно этимологии слова «space», оно вошло в употребление в 1300-х годах и происходит от французского «espace», а оно, в свою очередь, от латинского «spatium». В значении космического пространства «space» начало употребляться лишь с конца 17-го века, после того как появилось в художественном произведении Джона Мильтона.

Почему в физике скорость обозначается буквой v?

Для обозначения скорости в физике используют строчную букву v тоже не случайно. Это первая буква в латинском слове «velocitas», французском «vitesse» и английском «velocity». Все они означают скорость, быстроту, стремительность.

Возникает другой вопрос: почему именно «velocity» стало определением скорости, а не другие английские слова с похожим значением, например, «speed»? Дело в том, что в физике скорость является векторной величиной, которая отображает быстроту и направление перемещения объекта относительно заданной системы отсчета.

Слово «speed» указывает на скалярную скорость – величину, которая не зависит от системы координат. Например, скорость света – постоянная величина, поэтому на английском данный термин будет выглядеть как «the speed of light».

Кроме того, скорость и расстояние – взаимосвязанные величины наряду со временем. Эта связь в физике выражается формулой. Зная две величины, можно рассчитать и третью. Использование одинаковых букв нецелесообразно.

Источник

Как найти скорость течения реки: методика и рекомендации. Примеры решения задач

Многие люди хотя бы один раз в своей жизни путешествовали по реке на лодке, байдарке или катере. Для таких путешествий важно знать, с какой скоростью течет вода в реке, чтобы иметь возможность определить необходимое для перемещения на определенное расстояние время. В данной статье рассмотрим вопрос, как найти скорость течения реки, а также решим две физические задачи по данной теме.

Особенности течения воды в реках

Многие замечали, что одни реки текут медленно, и поверхность воды является гладкой. Обычно это крупные реки, например, Дон или Волга. Такое течение с точки зрения физики называется ламинарным, то есть слои жидкости перемещаются по прямым линиям и не смешиваются друг с другом. Более мелкие же речушки в некоторых местах буквально «бурлят». Этот тип течения характерен для рек горной местности. Он называется турбулентным. В отличие от ламинарного, здесь мелкие объемы воды перемещаются по хаотичным траекториям, на поверхности наблюдаются водовороты и пена.

Русло реки также оказывает существенное влияние на скорость течения. Так, известно, что вблизи берега и дна вода течет медленнее, чем в центральной части русла внутри ее объема. При своем движении слои воды задерживаются препятствиями, в виде неоднородностей дна и берегов, за счет трения о них. Причем каменистое дно уменьшает скорость перемещения воды сильнее, чем дно глинистое или песчаное.

Ширина русла и водоносность

Для более глубокого понимания вопроса, как найти скорость течения реки, важно знать еще один момент. Дело в том, что одна и та же река в разных местах может течь с различной скоростью. Причиной является изменение площади сечения ее русла, которое внешне связано с изменение ширины. Справедливости ради отметим, что не только изменение ширины, но и колебания в глубине влияют на быстроту течения воды (чем глубже, тем медленнее).

В виду сказанного выше, о скорости перемещения воды в реке имеет смысл говорить, если на достаточно длительном участке (километры и более) параметры ее русла колеблется незначительно, и река не имеет на этом участке притоков.

Читайте также:  Спиннинги для быстрых рек

Более надежной характеристикой для любой реки является ее водоносность. Под водоносностью понимают объем воды, проходящий через вертикальное сечение русла за единицу времени. Водоносность не зависит от параметров русла, однако, она так же, как и скорость, изменится, если на рассматриваемом участке реки имеется приток.

В данной статье мы ограничимся предоставленной информацией о водоносности и перейдем к вопросу, как найти скорость течения реки.

Практический метод определения скорости воды в реке

Рассмотрим простую практическую методику, которая отвечает на вопрос, как находить скорость течения реки.

В первую очередь необходимо выбрать участок реки, где движение воды будет ламинарным, и русло не будет менять своей ширины. Затем, на берегу следует забить колышек. Он будет служить начальной отметкой. От первого колышка, используя измерительную ленту, следует отсчитать вдоль берега расстояние 10 метров, затем, забить второй колышек. Он будет конечной отметкой. Все подготовительные работы сделаны. Теперь можно переходить непосредственно к измерениям.

Как находить скорость течения реки? Для этого понадобится какой-нибудь легкий предмет, который может плавать. Например, маленькая палочка, шишка, лист бумаги, перо птицы и так далее. Предмет следует бросить в воду напротив первого колышка. При этом необходимо включить секундомер. Как только предмет, двигаясь по реке, достигнет второго колышка, секундомер нужно остановить, и зафиксировать измеренное время t.

Описанные эксперимент рекомендуется повторить несколько раз (4-5). Затем, нужно рассчитать среднее значение измеренного времени. Обозначим его t¯. Оно равно:

Здесь n — число экспериментов. Формула, как найти скорость течения, имеет вид:

Здесь L — расстояние между колышками на берегу (в данном случае оно равно 10 метрам).

Некоторые рекомендации по измерению скорости и по обработке результатов

Чтобы получить более точное значение скорости течения воды в реке, необходимо плавающий предмет бросать в воду на разные расстояния от берега. Кроме того, измерения следует проводить в безветренную погоду.

Что касается обработки результатов, то скорость в практических целях удобно представлять не в метрах в секунду, а в километрах в час. Для этого величину в м/с следует умножить на переводной коэффициент 3,6. Например, 10 м/с — это 36 км/ч.

Выше было сказано, что материал русла определяет величину уменьшения измеренной средней скорости воды в реке. Поэтому рекомендуется в случае песчано-глинистого русла умножать рассчитанное значение v на 0,9, а в случае каменистого русла — на 0,8.

Задача с рыбаком и лодкой

Разобравшись, как найти скорость течения реки, решим следующую задачу. Известно, что рыбак на лодке должен проплыть по реке 10 км. Проведя необходимые измерения, он установил, что течение в реке составляет 1 м/с. Какое время рыбаку понадобиться для того, чтобы по течению проплыть указанное расстояние, не используя при этом дополнительные средства тяги (мотор, весла).

Переводим скорость из м/с в км/ч, получаем 3,6 км/ч. Тогда искомое время будет равно:

t = S/v = 10/3,6 ≈ 2,8 ч.

Задача с катером

Катер движется против течения из пункта A в пункт B, расстояние между которыми составляет 5 км. Это расстояние катер прошел за 30 минут. Чему равна скорость течения реки, если известно, что скорость катера в три раза больше ее.

Обозначим скорость воды в реке x. Тогда скорость движения катера равна 3*x. Поскольку он двигался против течения, то можно записать следующее уравнение движения:

Данные из условия задачи, подставленные в полученное равенство, приводят к ответу: скорость течения равна 5 км/ч.

Источник

Задачи на движение

Скорость тела. Средняя скорость тела

Решение задач на движение опирается на хорошо известную из курса физики формулу

позволяющую найти путь S , пройденный за время t телом, движущимся с постоянной скоростью v .

Сразу же сделаем важное

Замечание 1 . Единицы измерения величин S , t и v должны быть согласованными. Например, если путь измеряется в километрах, а времяв часах, то скорость должна измеряться в км/час.

В случае, когда тело движется с разными скоростями на разных участках пути, вводят понятие средней скорости , которая вычисляется по формуле

Например, если тело в течение времени t1 двигалось со скоростью v1 , в течение времени t2 двигалось со скоростью v2 , в течение времени t3 двигалось со скоростью v3 , то средняя скорость

Задача 1 . По расписанию междугородный автобус должен проходить путь в 100 километров с одной и той же скоростью и без остановок. Однако, пройдя половину пути, автобус был вынужден остановиться на 25 минут. Для того, чтобы вовремя прибыть в конечный пункт, водитель автобуса во второй половине маршрута увеличил скорость на 20 км/час. Какова скорость автобуса по расписанию?

Решение . Обозначим буквой v скорость автобуса по расписанию и будем считать, что скорость v измеряется в км/час. Изобразим данные, приведенные в условии задачи 1, на рисунке 1.

задачи на составление уравнений задачи на движение скорость тела средняя скорость тела примеры решения задач

задачи на составление уравнений задачи на движение скорость тела средняя скорость тела примеры решения задач

– время движения автобуса по расписанию (в часах);

– время, за которое автобус проехал первую половину пути (в часах);

v + 20 – скорость автобуса во второй половине пути (в км/час);

– время, за которое автобус проехал вторую половину пути (в часах).

В условии задачи дано время остановки автобуса – 25 минут. Его необходимо выразить в часах, чтобы все единицы измерения были согласованными:

Теперь можно составить уравнение, исходя из того, что автобус прибыл в конечный пункт вовремя, а, значит, время, которое он был в пути, плюс время остановки должно равняться времени движения автобуса по расписанию:

Решим это уравнение:

По смыслу задачи первый корень должен быть отброшен.

Читайте также:  Концертный зал рнб наб реки фонтанки 36 афиша

Задача 2. (МИОО) Первый час автомобиль ехал со скоростью 120 км/час, следующие три часа – со скоростью 105 км/час, а затем три часа – со скоростью 65 км/час. Найдите среднюю скорость автомобиля на протяжении всего пути.

Решение . Воспользовавшись формулой (2), получаем

Ответ . 90 км/час.

Задача 3 . Первую половину пути поезд шел со скоростью 40 км/час, а вторую половину пути – со скоростью 60 км/час. Найдите среднюю скорость поезда на протяжении всего пути.

Решение . Обозначим буквой S длину всего пути, выраженную в километрах. Изобразим данные, приведенные в условии задачи 3, на рисунке 2.

задачи на составление уравнений задачи на движение скорость тела средняя скорость тела примеры решения задач

задачи на составление уравнений задачи на движение скорость тела средняя скорость тела примеры решения задач

– время, за которое поезд прошел первую половину пути, выраженное в часах;

– время, за которое поезд прошел вторую половину пути, выраженное в часах.

Следовательно, время, за которое поезд прошел весь путь, равно

В соответствии с формулой (1) средняя скорость поезда на протяжении всего пути

Ответ . 48 км/час.

Замечание 2 . Средняя скорость поезда в задаче 3 равна 48 км/час, а не 50 км/час, как иногда ошибочно полагают, вычисляя среднее арифметическое чисел (скоростей) 40 км/час и 60 км/час. Средняя скорость не равна среднему арифметическому скоростей, а является величиной, вычисляемой по формуле (1).

Движение по реке. Скорость течения реки

В отличие от задач на движение по суше, в задачах на движение по реке появляется новая величина – скорость течения реки.

По отношению к берегу, который неподвижен, скорость тела, движущегося по течению реки, равна сумме собственной скорости тела ( скорости тела по озеру, скорости тела в неподвижной воде, скорости тела в стоячей воде ) и скорости течения реки. По отношению к берегу скорость тела, движущегося против течения реки, равна разности собственной скорости тела и скорости течения реки.

Задача 4 . Моторная лодка прошла по течению реки 14 км, а затем 9 км против течения, затратив на весь путь 5 часов. Скорость лодки в стоячей воде 5 км/час. Найдите скорость течения реки.

Решение . Обозначим буквой v скорость течения реки и будем считать, что скорость v измеряется в км/час.Изобразим данные, приведенные в условии задачи 4, на рисунке 3.

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

5 + v – скорость, с которой лодка шла по течению реки (в км/час);

– время движения лодки по течению реки (в часах);

5 – v – скорость, с которой лодка шла против течения реки (в км/час);

– время движения лодки против течения реки (в часах);

Теперь можно составить уравнение, принимая во внимание тот факт, что лодка находилась в пути 5 часов:

Решим это уравнение:

По смыслу задачи первый корень должен быть отброшен.

Задача 5. (Бюро «Квантум») Моторная лодка прошла по течению реки 34 км и 39 км против течения, затратив на это столько же времени, сколько ей нужно, чтобы пройти 75 километров в стоячей воде. Найдите отношение скорости лодки в стоячей воде к скорости течения реки.

Решение . Обозначим vс (км/ч) скорость лодки в стоячей воде и обозначим vр (км/ч) скорость течения реки. Изобразим данные задачи 5 на рисунках 4 и 5.

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

задачи на составление уравнений задачи на движение движение по реке скорость течения реки движение по течению движение против течения примеры решения задач

Учитывая тот факт, что в обеих ситуациях лодка провела в пути одно и то же время, можно составить уравнение:

Если ввести обозначение

то, воспользовавшись формулой

перепишем уравнение (3) в виде

Умножая уравнение (4) на vр , получим

По смыслу задачи первый корень должен быть отброшен.

Движение по кольцевым трассам

Задача 6. (www.reshuege.ru) Из пункта A круговой трассы длиной 46 км выехал велосипедист, а через 20 минут из пункта A следом за велосипедистом отправился мотоциклист. Через 5 минут после отправления мотоциклист догнал велосипедиста в первый раз, а еще через 46 минут после этого мотоциклист догнал велосипедиста во второй раз. Найдите скорости велосипедиста и мотоциклиста.

Решение . К тому моменту, когда мотоциклист в первый раз догнал велосипедиста, мотоциклист ехал 5 минут, а велосипедист ехал 25 минут, причем проехали они один и тот же путь. Отсюда вытекает, что скорость мотоциклиста в 5 раз больше скорости велосипедиста.

Таким образом, обозначив буквой v (км/час) скорость велосипедиста, получаем, что скорость мотоциклиста равна 5v (км/час).

В условии задачи дано время, прошедшее между двумя последовательными встречами мотоциклиста и велосипедиста, – 46 минут. Это время необходимо выразить в часах, чтобы все единицы измерения были согласованными:

Изобразим данные задачи, касающиеся движения мотоциклиста и велосипедиста между первой и второй встречами, на рисунке 6.

задачи на составление уравнений задачи на движение движение по кольцу движение по кольцевым трассам примеры решения задач

задачи на составление уравнений задачи на движение движение по кольцу движение по кольцевым трассам примеры решения задач

Поскольку за время часа, прошедшее от момента первой встречи до момента второй встречи, мотоциклист проехал 46 км (вся круговая трасса) плюс путь, который проехал велосипедист за часа, то можно составить следующее уравнение:

Решая это уравнение, находим скорость велосипедиста:

Ответ . Скорость велосипедиста 15 км/час, скорость мотоциклиста 75 км/час.

Задача 7 . На дороге, представляющей собой окружность длиной 60 км, пункты A и B являются диаметрально противоположными точками. Велосипедист выехал из пункта A и сделал два круга. Первый круг он прошел с постоянной скоростью, после чего уменьшил скорость на 5 км/час. Время между двумя прохождениями велосипедиста через пункт B равно 5 часам. Найти скорость, с которой велосипедист прошел первый круг.

Решение . Для определенности будем считать, что велосипедист двигался по кругу по часовой стрелке и рассмотрим рисунок 7.

задачи на составление уравнений задачи на движение движение по кольцу движение по кольцевым трассам примеры решения задач

задачи на составление уравнений задачи на движение движение по кольцу движение по кольцевым трассам примеры решения задач

Если обозначить буквой v (км/час) скорость, с которой велосипедист прошел первый круг, то скорость велосипедиста на втором круге будет равна v – 5 (км/час), и можно составить уравнение

Решая это уравнение, находим скорость велосипедиста на первом круге:

Поскольку скорость велосипедиста на первом круге больше, чем 5 км/час, то первый корень должен быть отброшен.

Читайте также:  Между какими реками возникло государство под названием двуречье

Ответ . 15 км/час.

Желающие ознакомиться с примерами решения различных задач по теме «Проценты» и применением процентов в экономике и финансовой математике могут посмотреть разделы нашего справочника «Проценты. Решение задач на проценты», «Простые и сложные проценты. Предоставление кредитов на основе процентной ставки», а также наши учебные пособия «Задачи на проценты» и «Финансовая математика».

Приемы, используемые для решения задач на выполнение работ представлены в разделе нашего справочника «Задачи на выполнение работ».

С примерами решения задач на смеси, сплавы и растворы можно ознакомиться в разделе нашего справочника «Задачи на смеси, сплавы и растворы».

С демонстрационными вариантами ЕГЭ и ОГЭ , опубликованными на официальном информационном портале Единого Государственного Экзамена, можно ознакомиться на специальной страничке нашего сайта.

Источник

Особенности решения задач на определение скорости течения реки. Примеры решений

Одними из увлекательных задач по математике и физике, которые предлагает учитель решить школьникам, являются задачи на определение скорости течения реки. В данной статье рассмотрим особенности решения этих задач и приведем несколько конкретных примеров.

О каких задачах пойдет речь?

Каждый знает, что вода в реке обладает некоторой скоростью течения. Равнинные реки (Дон, Волга) текут относительно медленно, небольшие же горные реки отличаются сильным течением и присутствием водяных воронок. Любой плавающий предмет, который брошен в реку, будет удаляться от наблюдателя со скоростью течения реки.

Люди, которые купались в реке, знают, что против ее течения плыть очень тяжело. Чтобы продвинуться на несколько метров, необходимо приложить намного больше усилий, чем при движении в стоячей воде озера. Наоборот, движение по течению осуществляется практически без каких-либо затрат энергии. Достаточно лишь поддерживать тело на плаву.

Все эти особенности позволяют сделать следующий важный вывод: если тело, имеющее в стоячей воде скорость v, будет двигаться в русле реки, то его скорость относительно берега будет равна:

  • v + u для движения по течению;
  • v — u для движения против течения.

Здесь u — скорость течения.

Если тело движется под некоторым углом к течению, то результирующий вектор его скорости будет равен сумме векторов v¯ и u¯.

Формулы, которые необходимо запомнить

Помимо приведенной выше информации, для решения задач на скорость течения реки следует запомнить несколько формул. Перечислим их.

Скорость течения является величиной постоянной, а вот скорость тела (лодки, катера, пловца) в общем случае может меняться, как по величине, так и по направлению. Для равномерного прямолинейного движения справедливой будет формула:

Где S — пройденный путь, v — скорость перемещения тела. Если движение происходит с ускорением a, тогда следует применять формулу:

Помимо этих формул, для успешного решения задач следует уметь пользоваться тригонометрическими функциями при разложении векторов скорости на составляющие.

Источник



СКОРОСТЬ ТЕЧЕНИЯ

— скорость движения воды. С. Т. в океанах измеряется в морских милях в сутки; С. Т. приливно-отливных на английских картах дается в узлах, на наших картах — в кабельтовых в час; С. Т. в реках, устьях рек и в пределах морских портов измеряется в м/сек.

Самойлов К. И. Морской словарь. — М.-Л.: Государственное Военно-морское Издательство НКВМФ Союза ССР , 1941

EdwART. Толковый Военно-морской Словарь , 2010

Смотреть что такое «СКОРОСТЬ ТЕЧЕНИЯ» в других словарях:

скорость течения — расход — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы расход EN flow rateFR … Справочник технического переводчика

скорость течения — tekėjimo greitis statusas T sritis Standartizacija ir metrologija apibrėžtis Greitis, kuriuo teka skystis arba dujos. atitikmenys: angl. flow velocity; stream velocity vok. Fleißgeschwindigkeit, f; Strömungsgeschwindigkeit, f rus. скорость потока … Penkiakalbis aiškinamasis metrologijos terminų žodynas

скорость течения — tekėjimo greitis statusas T sritis fizika atitikmenys: angl. flow velocity; stream velocity vok. Fleißgeschwindigkeit, f; Strömgeschwindigkeit, f; Strömungsgeschwindigkeit, f rus. скорость потока, f; скорость течения, f pranc. vitesse… … Fizikos terminų žodynas

скорость течения — vandens srovės greitis statusas Aprobuotas sritis hidrometeorologija apibrėžtis Vandens tekėjimo greitis metrais per sekundę. atitikmenys: angl. flow velocity vok. Strömungsgeschwindigkeit rus. скорость течения šaltinis Vandens debito matavimo… … Lithuanian dictionary (lietuvių žodynas)

скорость течения — tėkmės greitis statusas T sritis automatika atitikmenys: angl. stream velocity vok. Strömungsgeschwindigkeit, f rus. скорость течения, f pranc. vitesse d écoulement, f; vitesse de courant, f … Automatikos terminų žodynas

скорость течения — vandentėkmės greitis statusas T sritis ekologija ir aplinkotyra apibrėžtis Vandens tekėjimo greitis tam tikrame upės ruože. Priklauso nuo upės nuolydžio, vagos grublėtumo ir kitų veiksnių. atitikmenys: angl. flow speed; flow velocity vok.… … Ekologijos terminų aiškinamasis žodynas

скорость течения флюида — расход флюида — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы расход флюида EN fluid flow rate … Справочник технического переводчика

Критическая скорость течения — местная скорость (α)* стационарного течения газа, равная местной скорости звука. К. с. т. вводится обычно при анализе движения идеального совершенного газа, формула для её расчёта следует из Бернулли уравнения при отсутствии массовых сил: (α)* =… … Энциклопедия техники

Объемная скорость течения — 7 Объемная скорость течения Q Скорость течения массы жидкости, деленная на ее плотность Источник: ГОСТ 25283 93: Материалы спеченные проницаемые. Определение проницаемости жидкостей … Словарь-справочник терминов нормативно-технической документации

средняя скорость течения жидкости. — 3.13.10 средняя скорость течения жидкости. Средняя скорость: Условная скорость, равная отношению расхода к площади живого сечения. Источник: СО 34.21.308 2005: Гидротехника. Основные понятия. Термины и определения … Словарь-справочник терминов нормативно-технической документации

Источник

Adblock
detector